U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Protein Affects Radiation-Sensitive Programming and Cell Fate
Published: November 13, 2012
Posted: May 07, 2013

Understanding the potential effects of low doses of ionizing radiation on human health requires knowledge of how it influences biology at the tissue level. One key question is how irradiated cells communicate to their neighbors. Scientists at Pacific Northwest National Laboratory are working to define signaling pathways activated by low doses of radiation. They previously found that the protein annexin A2 is involved in the malignant transformation of cultured mouse epidermal cells by radiation. They now demonstrate that high and low doses of ionizing radiation increases A2 annexin levels in the nuclei of human and mouse monolayer cultures and in a human skin tissue model supporting a conserved nuclear function for annexin A2. Whole genome expression profiling in the presence and absence of annexin A2 identified altered transcriptional programming that changes the radioresponsive transcriptome. Bioinformatics predicted that silencing A2 may enhance cell death responses to stress associated with reduced activation of survival signals. The researchers validated the prediction by demonstrating that the A2-silenced cells were more likely to die after treatment with tumor necrosis factor alpha than control cells. Collectively, the data suggest that annexin A2 functions to regulate cell fate, which could impact the biological response to radiation. These results could lead to new targeted approaches in therapies directed at regulating radiation-induced cell death.

Reference: Waters, K. M., D. L. Stenoien, M. B. Sowa, C. H. Freiin Von Neubeck, W. B. Chrisler, R. Tan, R. L. Sontag, and T. J. Weber. 2013. "Annexin A2 Modulates Radiation-Sensitive Transcriptional Programming and Cell Fate," Radiation Research 179(1), 56-61. DOI: 10.1667/RR3056.1. (Reference link)

Contact: Noelle Metting, SC-23.2, (301) 903-8309
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Computational Biology, Bioinformatics, Modeling
  • Legacy: Low Dose Radiation, Radiobiology

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)