BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Aerosol Radiative Forcing in Historical and Future Climate Simulations
Published: March 15, 2013
Posted: April 18, 2013

Atmospheric aerosols from human activities such as fossil fuel combustion influence surface temperatures, mainly contributing to climate cooling. Although aerosol concentrations increased during the past century, they have been declining in many regions due to the recent imposition of pollution controls. A team of scientists, including U.S. Department of Energy researchers at Pacific Northwest National Laboratory, evaluated 10 Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) model simulations of aerosols and estimated the climate impacts for past and future simulations. The team found that the models represent present-day total aerosol optical depth (AOD), a measure of atmospheric blockage of radiation, relatively well, though many models underestimate AOD. Contributions from individual aerosol chemical components are quite different among models. The models captured most AOD trends during the years 1980 to 2000, but under-predicted increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD trends from black carbon or soot in many regions. This study found climate feedbacks, including cloud responses, contribute substantially (35% to 58%) to modeled historical aerosol radiative forcing. The largest 1850 to 2000 negative aerosol forcings (leading to cooling) are over and near Europe, South and East Asia, and North America, which are major emission regions. There remains considerable uncertainty in how climate feedbacks to aerosols, including cloud responses, are influencing climate.

Reference: Shindell, D. T., J.-F. Lamarque, M. Schulz, M. Flanner, C. Jiao, M. Chin, P. Young, Y. H. Lee, L. Rotstayn, G. Milly, G. Faluvegi, Y. Balkanski, W. J. Collins, A. J. Conley, S. Dalsoren, R. Easter, S. Ghan, L. Horowitz, X. Liu, G. Myhre, T. Nagashima, V. Naik, S. Rumbold, R. Skeie, K. Sudo, S. Szopa, T. Takemura, A. Voulgarakis, J.-H. Yoon, and F. Lo. 2013. “Radiative Forcing in the ACCMIP Historical and Future Climate Simulations,” Atmospheric Chemistry and Physics 13, 2939–74. DOI: 10.5194/acp-13-2939-2013. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)