U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Greenhouse Gas Mitigation Options Influence Climate via Direct Effects of Land-Use Change
Published: June 22, 2012
Posted: April 18, 2013

Proposed climate mitigation measures do not account for the non-greenhouse gas climate impacts of land-use change such as the regional effects of changing albedo or evapotranspiration. The same is true of the stabilization targets modeled for the Fifth Climate Model Intercomparison Project (CMIP5) Representative Concentration Pathways (RCPs). A recent U.S. Department of Energy (DOE) study examined the climate implications of two different scenarios that stabilize radiative forcing by greenhouse gases and aerosols at the same level, but with dramatically different patterns of land-use change over the 21st century. The study relied on a new modeling framework, the Integrated Earth System Model (iESM) being developed by three DOE labs, which couples the human decisionmaking components of an integrated assessment model, the Global Change Assessment Model (GCAM), with the Global Land-Use Model (GLM), and a state-of-the-art global climate model, the Community Earth System Model (CESM). The iESM is able to replicate the model coupling procedure in CMIP5 and can provide insight into the importance of non-greenhouse gas climate forcing from land-use change. The study also used offline land and radiative transfer models to identify forcing and feedback mechanisms that contribute to the climate effects of land-use change in different regions. The study found that Boreal deforestation strongly influences climate due to increased albedo coupled with a regional-scale water vapor feedback. Globally, the mitigation scenario with high biofuel use and correspondingly high levels of deforestation yielded a 21st century warming trend that is 0.5 °C cooler than baseline, driven by a decrease in radiative forcing that is distributed unevenly around the globe. These results demonstrate that neither climate change nor actual radiative forcing is uniquely related to atmospheric forcing targets, but depend on the socioeconomic pathways followed to meet each target.

Reference: Jones, A. D., W. D. Collins, J. Edmonds, M. S. Torn, A. Janetos, K. V. Calvin, A. Thompson, L. P. Chini, J. Mao, X. Shi, P. E. Thornton, G. Hurtt, and M. Wise. 2012. “Greenhouse Gas Policy Influences Climate via Direct Effects of Land-Use Change,” Journal of Climate, DOI: http://dx.doi.org/10.1175/JCLI-D-12-00377.1. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)