BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Modeling How Uranium Sticks to Soils
Published: January 26, 2011
Posted: March 26, 2013

more...

Image Credit: Pacific Northwest National Laboratory

" />
Computational modeling of uranium oxide ions with aluminum oxide provides insights that are contributing to development of a cheap and effective way to clean up nuclear waste sites. more...

Image Credit: Pacific Northwest National Laboratory

Determining how radioactive material sticks to soil and affects its movement into nearby water sources is a major challenge for cleaning up nuclear waste sites. This waste, which may include uranium, can be diffuse as well as difficult to isolate and remove. To reduce the cost and complexity of complete removal, innovative and inexpensive methods are needed to expedite cleanup efforts around the world, especially in sites with vast areas of contamination. Scientists at Pacific Northwest National Laboratory discovered that the surface of a common soil mineral, aluminum oxide, adheres to uranium, making it less mobile. The researchers assembled a detailed picture of how uranium adheres to the mineral surface using a computational model. By modeling the behavior of uranium in a complex subsurface environment, they were able to show that uranium sticks to the surface of aluminum oxide without changing it in any way and that a more acidic environment improves how well the two stick together. This cluster model approach allows for a straightforward comparison between different sorption mechanisms, and predictions can be directly related to X-ray adsorption experiment measurements. This approach can be used to model surface reactivity and be further utilized in other complex model systems. It also may lead to efficient, more affordable solutions for cleaning contaminated ground.

Reference: Glezakou, V., and W. A. de Jong. 2011. “Cluster-Models for Uranyl(VI) Adsorption on α-Alumina,” The Journal of Physical Chemistry A 115(7), 1257–63. DOI: 10.1021/jp1092509. (Reference link) (See also)

Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)