U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Black Carbon Reduces Snow Albedo
Published: March 04, 2012
Posted: March 26, 2013

Climate models indicate that the reduction of surface albedo caused by black carbon (BC) contamination of snow contributes to global warming and near-worldwide melting of ice. However, model predictions of BC-caused snow albedo reduction over a range of BC levels and snow grain sizes have not been verified by measurements. The main reason is that the BC effect is typically masked in natural environments by other variables that influence albedo, such as snow grain size, snow density, snow depth, and the interaction of sunlight with the underlying surface, tree cover, and solar zenith angle. Researchers from Lawrence Berkeley National Laboratory developed an approach to isolate the effect of black carbon (BC) on snow albedo through laboratory experimentation with newly developed processes for making both pristine and BC-laden snow and techniques for measuring the morphology, albedo, and BC content of this snow. These methods enabled quantification of the snow albedo reduction associated with increasing amounts of BC and as a function of snow grain size. The study verified that black carbon contamination at levels that have been found in natural settings appreciably reduces snow albedo. Increasing the size of snow grains decreased snow albedo and amplified the radiative perturbation of black carbon, which justifies the aging-related positive feedbacks that are included in climate models. Moreover, these data provide an extensive verification of a snow, ice, and aerosol radiation model, which will be included in the next assessment of the Intergovernmental Panel on Climate Change.

Reference: Hadley, O. L., and T. W. Kirchstetter. 2012. “Black-Carbon Reduction of Snow Albedo,” Nature Climate Change 2, 437–40. DOI: 10.1038/nclimate1433]. (Reference link)

Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)