U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Worldwide Datasets Greatly Improve Constraint on Key Cloud-Aerosol Relation Term
Published: February 19, 2013
Posted: March 26, 2013

Cloud formation occurs when aerosol particles take up moisture from the atmosphere. The water uptake rate is important to constraining the effect of aerosols on cloud brightness, or the “aerosol indirect effect,” resulting from pollution emissions, but the rate at which this occurs has been poorly constrained and has been formulated in terms of particle size, composition, and humidity. A new study, partially funded by the U.S. Department of Energy, used a large dataset to constrain the kinetics of water uptake as expressed by the condensation coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably (over five orders of magnitude, from 10-5 to 1!) and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. The authors analyzed 10 globally relevant datasets of cloud condensation nuclei to constrain the value of αc. They found that rapid uptake kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor uptake on droplets is considerably less than previously thought.

Reference: Raatikainen, T., A. Nenes, J. H. Seinfeld, R. Morales, R. H. Moore, T. L. Lathem, S. Lance, L. T. Padró, J. J. Lin, K. M. Cerully, A. Bougiatioti, J. Cozic, C. R. Ruehl, P. Y. Chuang, B. E. Anderson, R. C. Flagan, H. Jonsson, N. Mihalopoulos, and J. N. Smith. 2013. “Worldwide Data Sets Constrain the Water Vapor Uptake Coefficient in Cloud Formation,” Proceedings of the National Academy of Sciences USA 110(10),3760–64. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)