BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Shortcut to Calculating Aerosol-Cloud Signals
Published: December 11, 2012
Posted: March 26, 2013

Aerosol particles brighten clouds and contribute to climate cooling, but to calculate these effects in climate models requires lengthy calculations to average out the natural “noisiness” of clouds. Now, U.S. Department of Energy researchers from the Scripps Institute of Oceanography, University of Washington, and Pacific Northwest National Laboratory have shown that by nudging the winds simulated in the Community Atmosphere Model (CAM5) toward the winds measured in the atmosphere, the aerosol effects on cloud brightness can be identified much more quickly. This nudging greatly reduced variations in the column liquid water in clouds without changing the sensitivity of the column liquid water to the aerosol, thus permitting global estimates of aerosol effects on clouds in much shorter simulations. Simulations with preindustrial and present-day emissions of aerosol and aerosol precursor gases were both nudged toward the same winds so that the weather systems were similar in both simulations. They also performed simulations with preindustrial and with present-day emissions without nudging such that the weather systems could evolve freely in order to check their results. This study gives climate researchers a valuable tool for important climate change projection experiments.

Reference: Kooperman, G. J., M. S. Pritchard, S. J. Ghan, R. C. J. Sommerville, and L. M. Russell. 2012. “Constraining the Influence of Natural Variability to Improve Estimates of Global Aerosol Indirect Effects in a Nudged Version of the Community Atmosphere Model 5,” Journal of Geophysical Research-Atmospheres 117, DOI: 10.1029/2012JD018588. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)