BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Natural and Accelerated Bioremediation Research (NABIR) Findings Published in Science.
Published: June 06, 2001
Posted: August 03, 2001

In the May 18, 2001, issue of the journal Science, NABIR researcher Dr. Terry Beveridge of the University of Guelph, Canada, and collaborators at the Virginia Polytechnic Institute and State University published a paper entitled "Bacterial recognition of mineral surfaces: Nanoscale interactions between Shewanella and alpha-FeOOH." Shewanella oneidensis is a bacterium that can "respire" iron (oxy)hydroxide minerals, as well as metals such as chromium and uranium, in the absence of oxygen. Little is known about how bacteria might use a solid mineral substrate for respiration because of the difficulty in observing molecular level processes at the microbe-mineral interface. The researchers used a novel approach to examine the binding of metal reductases in the outer membrane of the bacterium to the mineral surface. Atomic force microscopy measured the binding strength between the bacterium and the mineral surface in the presence and absence of oxygen. Nanomechanical measurements showed an affinity between Shewanella and the iron containing mineral, goethite. This affinity was not measurable in the presence of oxygen or with minerals that were not respired. Molecular modeling suggested that an iron reductase protein in the outer membrane of the bacterium reduced the iron present in goethite as part of the respiratory process. This study is the first to measure microbe-mineral interactions at a nanoscale, and opens the possibility of combining nanoscale measurements with molecular genetics and mineralogy to identify all components of electron transfer in metal and radionuclide reduction during bacterial respiration.

Contact: Anna Palmisano, SC-74, 3-9963
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Research Technologies and Methodologies

Division: SC-33.1 Earth and Environmental Sciences Division, BER
      (formerly SC-74 Environmental Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)