U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Natural and Accelerated Bioremediation Research (NABIR) Findings Published in Science.
Published: June 06, 2001
Posted: August 03, 2001

In the May 18, 2001, issue of the journal Science, NABIR researcher Dr. Terry Beveridge of the University of Guelph, Canada, and collaborators at the Virginia Polytechnic Institute and State University published a paper entitled "Bacterial recognition of mineral surfaces: Nanoscale interactions between Shewanella and alpha-FeOOH." Shewanella oneidensis is a bacterium that can "respire" iron (oxy)hydroxide minerals, as well as metals such as chromium and uranium, in the absence of oxygen. Little is known about how bacteria might use a solid mineral substrate for respiration because of the difficulty in observing molecular level processes at the microbe-mineral interface. The researchers used a novel approach to examine the binding of metal reductases in the outer membrane of the bacterium to the mineral surface. Atomic force microscopy measured the binding strength between the bacterium and the mineral surface in the presence and absence of oxygen. Nanomechanical measurements showed an affinity between Shewanella and the iron containing mineral, goethite. This affinity was not measurable in the presence of oxygen or with minerals that were not respired. Molecular modeling suggested that an iron reductase protein in the outer membrane of the bacterium reduced the iron present in goethite as part of the respiratory process. This study is the first to measure microbe-mineral interactions at a nanoscale, and opens the possibility of combining nanoscale measurements with molecular genetics and mineralogy to identify all components of electron transfer in metal and radionuclide reduction during bacterial respiration.

Contact: Anna Palmisano, SC-74, 3-9963
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Research Technologies and Methodologies

Division: SC-23.1 Climate and Environmental Sciences Division, BER
      (formerly SC-74 Environmental Sciences Division, OBER)

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)