U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

High-Resolution Land Surface Parameters for the Community Land Model
Published: November 06, 2012
Posted: March 26, 2013

Land cover and land use, topography, and soil properties contribute to land surface heterogeneity around the world. As the resolution of climate models increases, it is critical to capture fine-scale land features in the land-surface datasets that drive the models. U.S. Department of Energy scientists at Pacific Northwest National Laboratory have developed a high-resolution, gridded dataset at 0.05 degree resolution for the Community Land Model (CLM). This dataset includes plant functional types (PFTs), leaf area index (LAI), stem area index (SAI), and non-vegetated land cover composition. When they compared the new surface parameters with those currently used in CLM4 at 0.5 degree resolution, the researchers found that the new parameters resolve more diverse subgrid PFTs within each 0.5 degree grid cell. The new dataset also shows more contributions from shrubs, grass, and crops as opposed to bare soil and a global decrease in LAI in boreal forests, but a large increase in LAI in tropical forests. This study demonstrated the use of the new high-resolution data in a coupled land-atmosphere model coupled to the CLM at 12 km resolution over the western United States. This analysis showed the important spatial details in surface fluxes being resolved by high-resolution modeling, which, in turn, would influence the climate.

Reference: Ke, Y., L. R. Leung, M. Huang, A. M. Coleman, H. Li, and M. S. Wigmosta. 2012. “Development of High-Resolution Land Surface Parameters for the Community Land Model,” Geoscientific Model Development 5, 1341–62. DOI: 10.5194/gmd-5-1341-2012. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)