U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


X-Ray Crystallography Reveals Potential Drug Target for Ulcer-Causing Bacteria
Published: December 09, 2012
Posted: March 26, 2013

Half the world’s population is chronically infected with Helicobacter pylori, which causes gastritis, gastric ulcers, and an increased incidence of gastric adenocarcinoma. Treatment is becoming less effective because of increasing antibiotic resistance, suggesting that a specifically targeted approach to eradicate this organism would be beneficial. H.pylori’s survival and its ability to colonize in the acidic stomach depend on the presence of HpUreI, a proton-gated inner-membrane urea channel protein, which enables chemical reactions that balance acidic effects. HpUreI has thus been identified as a clinical target. An HpUreI structure, revealed at the Stanford Synchrotron Radiation Lightsource at the SLAC National Accelerator Laboratory, shows an arrangement of six protomers that form a compact hexameric ring about 95 Å in diameter and 45 Å in height. The hexamer’s center is filled with an ordered lipid plug. Each protomer encloses a channel of transmembrane helices, with specific side chains lining the entire channel, and defines two constriction sites in the middle of each channel. This first three-dimensional channel structure from the AmiS/UreI superfamily provides unique information that may guide the discovery of small-molecule inhibitors, offering the possibility of clinical treatment without the use of conventional antibiotics.

Reference: Strugatsky, D., et al. 2013. “Structure of the Proton-Gated Urea Channel from the Gastric Pathogen Helicobacter pylori,” Nature 493, 255–58. DOI: 10.1038/nature11684. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)