U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Nuclear Architecture and Gene Expression
Published: November 09, 2012
Posted: March 26, 2013

Gene positioning and regulation of nuclear architecture are thought to influence gene expression. Soft X-ray tomography (SXT) imaging shows that silent olfactory receptor (OR) genes from different chromosomes in mouse olfactory neurons converge in a small number of heterochromatic foci. These foci are OR exclusive and form in a differentiation-dependent manner specific to cell type. OR gene aggregation is developmentally synchronous with the downregulation of the lamin B receptor (LBR) and can be reversed by ectopic LBR expression in mature olfactory neurons. LBR-induced reorganization of nuclear architecture and disruption of OR aggregates perturbs the singularity of OR transcription and disrupts the olfactory neurons’ targeting specificity. These observations indicate spatial sequestering of heterochromatinized OR family members as a basis of monogenic and monoallelic gene expression. This research was conducted using resources at the Advanced Light Source at Lawrence Berkeley National Laboratory.

Reference: Clowney, E. J., et al. 2012. “Nuclear Aggregation of Olfactory Receptor Genes Governs Their Monogenic Expression,” Cell 151, 724–37. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)