U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Revealing the Molecular Underpinnings of a Key Enzyme
Published: November 30, 2010
Posted: March 26, 2013

As a major component of the biological nitrogen cycle, the bacterial enzyme nitrogenase (N2ase) converts nitrogenfrom air into ammonia, thereby making it accessible to plant life. The enzyme achieves this feat at a metal-sulfur cluster called the FeMo cofactor by a mechanism that still is not wellunderstood. Research to better understand how metals and metal clusters interact with nitrogen and reduced nitrogen species is exploiting the soft X-ray region via transition metal L-edgeand nitrogen K-edge spectroscopy. Complementary studies haveused the stopped-flow infrared system in the mezzanine spectroscopysuite at the Advanced Light Source at Lawrence Berkeley National Laboratory to probe time-dependent binding of the carbon monoxide molecule CO to N2ase.

Reference: Yang, Z.-Y., et al. 2011. “Steric Control of the Hi-CO MoFe Nitrogenase Complex Revealed by Stopped-Flow Infrared Spectroscopy,” Angewandte Chemie International Edition 50, 272–75. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)