BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Impacts of Inverted Channels in Floating Ice Shelves on Ice Melt Rate
Published: December 01, 2012
Posted: February 14, 2013

Melting of ice sheets from Greenland and Antarctica will lead to sea level change. It is critical that processes influencing the melt and glacier flow rates be understood and captured in models. Several Greenland and Antarctic ice shelves have deep inverted channels in the direction of ice flow and running along the underside of the ice floating over the ocean. U.S. Department of Energy researchers have developed a coupled ice-ocean model to understand the formation and evolution of submarine melt channels beneath the floating ice shelf of Greenland's Petermann glacier. The model uses the Community Ice Sheet Model (CISM) to model the flow of grounded and floating (shelf) ice and an ocean layer (or "plume") model to represent interaction with the underlying ocean. Melting, bedrock topography, and flow processes at the point where the glacier departs into the ocean stencils channels into the ice base as it passes by. These channels help to control and preserve the ice shelf against excessive submarine melting. The calculations revealed that warming of subsurface waters would increase submarine melting. Surprisingly, slight cooling of subsurface waters could also generate a reorganization of the submarine melt pattern and catastrophic thinning of the ice shelf. Increased discharge of (fresh) subglacial melt water at the grounding line also increases overall submarine melting through increased entrainment of relatively warm ocean waters. The study has revealed complex interactions in the ice-ocean system as well as conditions and variables that will require scrutiny and more detailed modeling in future studies.

Reference: Gladish, C.V., D. M. Holland, P. R. Holland and S. F. Price. 2012. "Ice-Shelf Basal Channels in a Coupled Ice-Ocean Model," Journal of Glaciology 58(212), 1227-44. DOI: 10.3189/2012JoG12J003.

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)