BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Aerosol Pollution Warming Effects on Climate Due to Their Impacts on Cold Icy Clouds
Published: October 19, 2012
Posted: February 14, 2013

Because ice clouds are nucleated by aerosol particles, changes to the aerosol composition may alter the ice crystal properties, ice-cloud reflectivity of incoming sunlight, and absorption of outgoing long-wave radiation. This aerosol-ice-cloud effect is poorly understood, largely unconstrained, but potentially quite significant. U.S. Department of Energy researchers, including at Pacific Northwest National Laboratory, quantified these aerosol "indirect" effects (AIE) on high-altitude cirrus clouds, using several different ice nucleation formulations in two different advanced General Circulation Models (GCMs): the Community Atmosphere Model version 5 (CAM5), and the European Center Hamburg model version 5 with the Hamburg Aerosol Model. They investigated (a) the climate states simulated by different ice nucleation schemes, (b) anthropogenic effects on ice clouds, and (c) the role of black carbon (soot) as ice nuclei in ice clouds. Different ice nucleation formulations in the two climate models result in different balances between "homogeneous" nucleation (freezing of cold sulfate droplets) and "heterogeneous" nucleation (cloud particle freezing enhanced by contact against a solid sulfate-coated dust particle). However, the magnitude of AIE on ice clouds is remarkably similar with the total ice AIE estimated at 0.27 ±0.10 W m-2, a warming effect. This warming effect represents a 20 percent offset of the simulated total shortwave scattering of incoming radiation (cooling) AIE of -1.6 W m-2. Black carbon (soot) aerosols have a small AIE (-0.06 W m-2) for the ice nucleation efficiencies within the range of laboratory measurements. This study is one of the first to estimate the warming effect of aerosols on high-altitude ice clouds.

Reference: Gettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen. 2012. "Climate Impacts of Ice Nucleation," Journal of Geophysical Research 117, D20201. DOI: 10.1029/2012JD017950. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)