U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols
Published: September 25, 2012
Posted: February 14, 2013

Summer monsoons deliver about three quarters of South Asia's annual rainfall, influencing fresh water supplies, agriculture, and energy production. Small changes in monsoons can have large impacts on local living conditions, affecting crop yields, prolonging droughts, or fostering floods. Recent studies have suggested various mechanisms and effects for how pollution aerosols in South Asia impact the monsoon. Aerosols cool the underlying surface and reduce the north-south temperature gradient leading to slow-response climate effects. High-altitude absorbing aerosols may cause short-term, localized enhancement of convective uplift. Using a global climate model with a fully predictive aerosol life cycle, U. S. Department of Energy researchers from Pacific Northwest National Laboratory investigated the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. They show that the feedbacks associated with the slower sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds, and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the north-south tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. The results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80ºE but decreases east of it. This study provides insights into the various impacts of aerosols on the South Asian monsoon.

Reference: Ganguly, D., P. J. Rasch, H. Wang, and J.-H. Yoon. 2012. "Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols," Geophysical Research Letters 39, L18804. DOI: 10.1029/2012GL053043. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)