BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols
Published: September 25, 2012
Posted: February 14, 2013

Summer monsoons deliver about three quarters of South Asia's annual rainfall, influencing fresh water supplies, agriculture, and energy production. Small changes in monsoons can have large impacts on local living conditions, affecting crop yields, prolonging droughts, or fostering floods. Recent studies have suggested various mechanisms and effects for how pollution aerosols in South Asia impact the monsoon. Aerosols cool the underlying surface and reduce the north-south temperature gradient leading to slow-response climate effects. High-altitude absorbing aerosols may cause short-term, localized enhancement of convective uplift. Using a global climate model with a fully predictive aerosol life cycle, U. S. Department of Energy researchers from Pacific Northwest National Laboratory investigated the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. They show that the feedbacks associated with the slower sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds, and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the north-south tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25°N. The results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80ºE but decreases east of it. This study provides insights into the various impacts of aerosols on the South Asian monsoon.

Reference: Ganguly, D., P. J. Rasch, H. Wang, and J.-H. Yoon. 2012. "Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols," Geophysical Research Letters 39, L18804. DOI: 10.1029/2012GL053043. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)