U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Using Synchrotron Spectroscopy to Understand How a Protein Evolves
Published: December 09, 2012
Posted: January 24, 2013

A major challenge in research to enable large-scale production of biofuels is developing enzymes that are highly efficient in converting biomass components into usable fuels. Enzymes are proteins that are configured to catalyze such conversions. Many protein structures are known, including those of many valuable enzymes. Much less is known about how small changes in a protein’s composition can change its three-dimensional structure and control its catalytic efficiency, or even convert a protein with no catalytic function into one that is an efficient catalyst. New research shows the structural basis for conversion by directed evolution of a non-catalytic small protein into an enzyme that is an effective catalyst for linking RNA molecules. The scientists used an Extended X-ray Absorption Fine Structure (EXAFS) station at the Stanford Synchrotron Radiation Lightsource (SSRL) to determine the active-site structure of the newly synthesized enzyme. The EXAFS experiments were able to show the exact chemical environment of each zinc atom in the new enzyme, leading to an explanation of why it had developed the catalytic activity. The research was carried out by a team of scientists from the University of Minnesota and SSRL and is published in Nature Chemical Biology.

Reference: Chao, F.-A., et al., 2013. “Structure and Dynamics of a Primordial Catalytic Fold Generated by In Vitro Evolution,” Nature Chemical Biology 9, 81–83. DOI: 10.1038/nchembio.1138. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)