U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Novel Bioremediation Strategy for Degrading Contaminants
Published: August 01, 2012
Posted: December 04, 2012

Microbes continue to offer surprises by their range of capabilities and versatility. When studying a microbe in its natural environment for a particular application, scientists often find that it also does something quite different and useful. A new study of the basic biological processes of methane-producing bacteria (methanotrophs) found that Methylocystis strain SB2 can also grow on acetate or ethanol and degrade a wide range of halogenated hydrocarbons. A specific pollutant-degrading protein, particulate methane monooxygenase (pMMO), attacked pollutants of interest while the bacteria used ethanol to grow. Ethanol added to contaminated groundwater enhances the ability of the groundwater to “flush” pollutants such as trichloroethylene and tetrachloroethylene. The authors suggest that the resulting aqueous ethanol-pollutant solution can be passed through a methanotrophic bioreactor where both ethanol and the pollutants are removed by a bacterium like Methylocystis strain SB2. The study, which began as a project to understand how methanotrophs that produce a metal-binding compound (methanobactin) affect the behavior of copper and mercury in the environment, led to new discoveries that could provide novel bioremediation strategies.

Reference: Jagadevan, S., and J. D. Semrau. 2012. “Priority Pollutant Degradation by the Facultative Methanotroph, Methylocystis Strain SB2,” Applied Microbiology and Biotechnology, DOI: 10.1007/s00253-012-4310-y. (Reference link).

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)