U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Radiation-Induced Protein Protects Against Radiation Damage
Published: March 26, 2012
Posted: December 04, 2012

Understanding how cells repair DNA damage from ionizing radiation is a major focus of low-dose radiation biology research. New research now explains how a multifunctional protein protects against low dose radiation-induced DNA damage. The translationally controlled tumor protein (TCTP) is a highly conserved protein found in mammals, plants, and yeast. TCTP participates in numerous cellular processes, including protein synthesis, cell growth, and allergic reactions. A critical role of TCTP is found in a cell’s ability to repair DNA damage and maintain genomic integrity in response to stressful agents. The investigators had previously observed adaptive responses when normal human cells were exposed to low doses of gamma rays that mimic human exposure during diagnostic radiography or occupational activities. Specifically, these irradiated cells exhibited significantly less chromosomal damage than observed in nonirradiated cells. Their new findings show that this protective effect only occurs in the presence of TCTP. This study demonstrates that after exposure to low doses of ionizing radiation, signals are activated that have the potential to stimulate protective mechanisms that could reduce the risk from radiation exposure. The new study was carried out by scientists at the University of Medicine and Dentistry of New Jersey and the Fourth Military Medical University in the People’s Republic of China.

Reference: Zhang, J., S. M. de Toledo, B. N. Pandev, G. Guo, D. Pain, H. Li, and E. I. Azzam. 2012. “Role of the Translationally Controlled Tumor Protein in DNA Damage Sensing and Repair,” Proceedings of the National Academy of Sciences USA 109(16), E926–E933. DOI: 10.1073/pnas.1106300109. (Reference link).

Contact: Noelle Metting, SC-23.2, (301) 903-8309
Topic Areas:

  • Legacy: Low Dose Radiation, Radiobiology

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)