BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


El Niño and Maximum Temperature Extremes
Published: October 16, 2012
Posted: November 20, 2012

A study led by a U.S. Department of Energy (DOE)-funded scientist examines the impact of the El Niño-Southern Oscillation (ENSO) on temperature extremes for both observations and coupled climate model simulations. The recently developed observed gridded dataset of climate extremes indices (HadEX2) shows marked contrasts in seasonal composites of the monthly maximum value of daily maximum temperatures during the cold and warm phases of ENSO. Extreme maximum temperatures are significantly cooler over Australia, southern Asia, Canada, and South Africa during strong La Niña events compared to El Niño events and significantly warmer over the contiguous United States and southern South America. Two versions of the DOE-National Science Foundation Community Climate System Model (CCSM3 and CCSM4) are contrasted for their ability to capture these relationships given their very different simulations of ENSO. The CCSM3 ENSO simulation has a strong biennial frequency that is more narrowly confined along the equator than observations, while the CCSM4 ENSO simulation is more realistic in both frequency and pattern. While both models capture some aspects of the observed regional changes across the globe, the fidelity of the ENSO simulation appears to be crucial for simulating the magnitude and sign of the extreme maximum temperature relationships. Over the United States in particular, the composite pattern of maximum temperature extremes with ENSO is weak and opposite in sign for CCSM4 compared to that observed for CCSM3. CCSM4 is much improved, capturing the observed increase in U.S. maximum temperature extremes during La Niña with realistic amplitude, pattern, and statistical significance. In a future emissions scenario of CCSM4, the contrast between maximum temperature extremes during El Niño and La Niña events strengthens over Australia whereas it weakens slightly over the United States. Further understanding of the mechanisms leading to these projected changes will enable better predictions of regional changes due to ENSO.

Reference: Arblaster, J. M., and L.V. Alexander. 2012. “The Impact of the El Niño-Southern Oscillation on Maximum Temperature Extremes,” Geophysical Research Letters 39(20), L20702. DOI: 10.1029/2012GL053409. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)