U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Watching Bioremediation in Action
Published: October 19, 2012
Posted: November 20, 2012

Indigenous microbial communities can be used to immobilize radioactive or toxic contaminants in subsurface sediments, thus reducing their spread and associated risk. This strategy relies on encouraging the growth of these communities by providing them with nutrients. The microbes reduce the normally present iron-Fe(III) to iron-Fe(II), which in turn converts many metallic contaminants, including uranium, chromium, and technetium, from soluble to insoluble forms. Being able to visualize the flow of water through the sediment as it delivers both the nutrients and the contaminants to the microbes, as well as the three-dimensional density of Fe(II), is critical for understanding the progressive biological processes that produce Fe(II) and the evolution of flow patterns through the sediment. Scientists at Lawrence Berkeley National Laboratory have validated the utility of two radiotracers, 99mTc-pertechnetate (which measures Fe(II) density) and 99mTc-DTPA (which is a flow tracer) in bioreduced sediment. This work, recently published in Environmental Science and Technology, shows that these technetium radiotracers can be used to examine and guide the development of new bioremediation processes in environmental systems.

Reference: Vandehey, N. T., J. P. O’Neil, A. J. Slowey, R. Boutchko, J. Druhan, W. W. Moses, and P. S. Nico. 2012. “Monitoring Tc Dynamics in a Bioreduced Sediment: An Investigation with Gamma Camera Imaging of 99mTc-Pertechnetate and 99mTc-DTPA,” Environmental Science and Technology, DOI: 10.1021/es302313h. (Reference link)

Contact: Prem Srivastava, SC-23.2, (301) 903-4071
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Legacy: Radiochemistry and Instrumentation

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)