U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Watching Carbon Dioxide Move in Plant Leaves
Published: June 08, 2012
Posted: November 01, 2012

U.S. Department of Energy (DOE) plant biology research seeks to optimize plant productivity, both for biofuel development and for carbon sequestration in biomass. Taking a lesson from medical technology, plant biologists are now using sophisticated imaging technology to learn more about nutrient utilization in plants by watching the movement of those nutrients in real time. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2, but because plants typically have very thin leaves, littlemedium is availablefor the emitted positronsto undergo an annihilation event within the plant leaf resulting in limited sensitivity for PET imaging.To address this problem DOE’s Thomas Jefferson Laboratory has developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is equipped with a flexible arm to allow its placement on or under a leaf while maintaining its original orientation. The detector has been used to generate dynamic images of carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions. The PhytoBeta detector system and methodology opens new possibilities for short-lived radioisotope use in plant biology research,especially for problems relatedto carbon utilization, transport, and sequestration.

Reference: Weisenberger, A. G., B. Kross, S. Lee, J. McKisson, J. E. McKisson, W. Xi, C. Zorn, C. D. Reid, C. R. Howell, A. S. Crowell, L. Cumberbatch, B. Fallin, A. Stolin, and M. F. Smith. 2012. “PhytoBeta Imager: A Positron Imager for Plant Biology,” Physics in Medicine and Biology 57(13), 4195–210. DOI: 10.1088/0031-9155/57/13/4195. (Reference link)

Contact: Dean Cole, SC 23.2, (301) 903-3268
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Legacy: Radiochemistry and Instrumentation

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)