U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Regulation of Wood Formation Characterized in Populus
Published: August 22, 2012
Posted: October 18, 2012

Poplar Trees provided by North Carolina State University" />
Poplar Trees provided by North Carolina State University

Poplar is a promising bioenergy feedstock due to its rapid growth and large biomass, and because sugars extracted from the lignocellulosic biomass (wood) of these native trees can be fermented to form renewable biofuels. These sugars are embedded within lignin, a complex, rigid structure that is critical to the overall health of the plant but that also impedes extraction of the sugars. New U.S. Department of Energy research is providing insight into how the lignocellulosic material forms in poplar. The process involves the expression of a cascade of genes whose regulation is poorly understood. The researchers at North Carolina State University report their discovery of a single protein ("controller" protein) that regulates this cascade on multiple levels to ensure normal growth, doing so in a way never before seen in plants. The controller protein was found outside the cell nucleus. In the presence of one of four other related proteins, it is carried into the nucleus where the two proteins bind. The newly formed molecule then suppresses expression of the regulatory gene cascade. This discovery helps define how wood formation occurs at the molecular level, furthering our understanding of a process critical to plant growth. The results will help guide research to optimize bioenergy production from biomass.

Reference: Li, Q., Y.-C. Lin, Y.-H. Sun, J. Song, H. Chen, X.-H. Zhang, R. R. Sederoff, and V. L. Chiang. 2012. "Splice Variant of the SND1 Transcription Factor Is a Dominant Negative of SND1 Members and Their Regulation in Populus trichocarpa," Proceedings of the National Academy of Sciences (USA) 109(36), 14699-704. DOI: 10.1073/pnas.1212977109. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)