U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Fungal End to Coal and the Carboniferous Period: A Possible Solution for Biofuels?
Published: June 29, 2012
Posted: October 18, 2012

Amanita muscaria of the Class Agaricomycetes
Source: Lawrence Berkeley National Laboratory

Much of the world's coal was generated 300-360 million years ago during the Carboniferous period. Wood (a major pool of organic carbon that is highly resistant to decay largely due to its lignin content) was deposited, transformed to peat, and eventually transformed to coal. But coal formation may also have declined from an unlikely source: fungi. These fungi had enzymes (ligninases) capable of degrading lignin, a category of enzyme important for the Department of Energy's bioenergy mission, since lignin in plant biomass hinders biomass conversion to biofuels. An international team of scientists from Clark University and DOE's Joint Genome Institute has proposed that a species of fungus, first appearing at about the end of the Carboniferous period, could more efficiently break down dead plant matter, possibly leading to the decline in coal formation. By comparing the genomic sequences of 31 fungi, including 12 sequenced for this study, the researchers showed that genes able to degrade lignin first appeared at the end of this period. Instead of becoming coal, the plant biomass decayed and the carbon was released into the atmosphere as carbon dioxide. This research provides insights into the origin of ligninases that can be used to develop processes for converting plant and tree biomass into bioenergy products.

Reference: Floudas, D., et.al. 2012. "The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes," Science 336, 1715-19. DOI: 10.1126/science.1221748. (Reference link)

Contact: Dan Drell, SC-23.2, (301) 903-4742
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)