U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


How Iron in Minerals Affects Subsurface Uranium
Published: August 01, 2012
Posted: October 18, 2012

Subsurface minerals help control the chemical form of contaminants such as uranium (U). The redox (reduction and oxidation) state of soils and sediments exists on a continuum from oxidized to reduced and can affect the mobility of uranium plumes. Under oxidized conditions, U is rather soluble as a uranyl ion in the U6+ valence state, whereas under reducing conditions U can become immobilized in the less-soluble U4+ valence state. Researchers at the University of Iowa and Argonne National Laboratory have found that a complex mixture of ferrous iron (Fe2+)-bearing minerals in a naturally reduced soil is capable of reducing and immobilizing uranium. Using Mössbauer spectroscopy at the University of Iowa and synchrotron x-ray absorption spectroscopy at the Advanced Photon Source at Argonne, the researchers found that uranium was reduced by Fe2+ in clay minerals and by a less-common, transient, and highly reactive Fe2+-mineral called green rust. The researchers also observed that the reduced U4+ atoms formed a product different from the uraninite mineral (UO2) commonly observed in laboratory studies, providing evidence for the diversity in chemical speciation of reduced U in natural systems. This study provides detailed information necessary for understanding toxic and radioactive contaminant mobility which will contribute to the long-term stewardship of U.S. Department of Energy legacy sites.

Reference: Latta, D. E., M. I. Boyanov, K. M. Kemner, E. J. O'Loughlin, and M. M. Scherer. 2012. "Abiotic Reduction of Uranium by Fe(II) in Soil," Applied Geochemistry 27, 1512–24. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)