U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding How microbes Work Together: Methane Production by Partnered Microbes
Published: June 28, 2012
Posted: October 18, 2012

Methanogenic archaea and sulfate-reducing bacteria (SRBs) both play important roles in the carbon cycle of soils, wetlands, and other environments with limited oxygen availability. SRBs are versatile consumers of a variety of organic compounds, while methanogens primarily convert hydrogen and CO2 into methane. Neither of these organisms is capable of independent growth on lactate, a small organic compound that is an important intermediate in food webs, but can consume it when working together in a partnership called syntrophy. Researchers at the University of Washington and Lawrence Berkeley National Laboratory have published a new study that helps explain how this partnership works. They carried out a high-resolution transcriptomic study of changes in gene expression of the methanogen Methaococcus maripaludis during syntrophic growth on lactate with the SRB Desulfovibrio vulgaris as a partner. The methanogen shows a substantial shift in genes associated with conversion of hydrogen to methane, switching over to a parallel set of enzymes that may be better adapted to low rates of hydrogen production and other conditions associated with syntrophy. These results advance our understanding of microbial production of a potent greenhouse gas and highlight the important role of subtle interactions between organisms that influence environmental processes.

Reference: Walker, C. B., A. M. Redding-Johanson, E. E. Baidoo, L. Rajeev, Z. He, E. L. Hendrickson, M. P. Joachimiak, S. Stolyar, A. P. Arkin, J. A. Leigh, J. Zhou, J. D. Keasling, A. Mukhopadhyay, and D. A. Stahl. 2012. "Functional Responses of Methanogenic Archaea to Syntrophic Growth," The ISME Journal 6, 2045-2055. DOI: 10.1038/ismej.2012.60. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)