U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Bacterium with Improved Hydrogen Production from Sunlight
Published: August 07, 2012
Posted: October 18, 2012

Marine Cyanobacterium Cyanothece
The single-celled marine cyanobacterium Cyanothece 51142, captured by a light microscope. Source: Washington University, St. Louis

One challenge to the commercialization of microbial production of hydrogen using sunlight is that the oxygen produced by photosynthesis decreases hydrogen production. Various biological mechanisms have evolved to separate the two reactions and scientists have been looking for engineering solutions, but the challenge is not yet solved. Scientists at the Pacific National Northwest Laboratory now have shown for the first time that a single-celled cyanobacterium, Cyanothece, is able to produce hydrogen and oxygen simultaneously without interruption for at least 100 hours. The bacteria produce hydrogen at relatively high rates without high cell density or inducing circadian rhythms, as required in studies by other researchers. Furthermore, there is little photo-damage and decay of the photosynthesis apparatus, perhaps enabled by the removal of excess electrons by the hydrogen production. These results and the improved understanding of the underlying cyanobacterial physiology will help advance the biotechnology of microbial hydrogen production.

Reference: Melnicki, M. R., et al. 2012. "Sustained H2 Production Driven by Photosynthetic Water Splitting in a Unicellular Cyanobacterium," mBio 3(4), e00197-12. DOI:10.1128/mBio.00197-12. (Reference link)

Contact: John Houghton, SC-23.2, (301) 903-8288, John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)