U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Genetic Tools for Engineering a Biomass-Degrading Microbe
Published: August 22, 2012
Posted: October 18, 2012

Achieving efficient and cost-effective breakdown of cellulosic plant biomass remains a significant barrier to the development of economically competitive biofuels that do not compete with food supplies. The hot spring bacterium Caldicellulosiruptor has been shown to efficiently degrade biomass (e.g., switch grass and corn stover) at temperatures over 160° Fahrenheit, but further characterization and engineering of this organism for biofuel production has proven challenging due to a lack of tools for genetic manipulation. Researchers at the DOE BioEnergy Science Center (BESC) have now developed the first system allowing the stable introduction of foreign DNA elements into this microbe. This breakthrough is based on the identification of a Caldicellulosiruptor "immune system" that normally protects the bacterium from viral infection, destroying outside DNA before it can be integrated into the host genome. The BESC team was able develop a set of targeted nucleic acid modifications that protects DNA from the host immune system and allows the introduction of new genes and regulatory elements into the organism. Now that Caldicellulosiruptor is a step closer to the model status of an easily manipulated microbe like E. coli, the team can more effectively study the organism's unique cellulose-degrading properties and engineer new metabolic pathways that would allow direct conversion of plant biomass into next-generation biofuels.

Reference: Chung, D., J. Farkas, J. R. Huddleston, E. Olivar, and J. Westpheling. 2012. "Methylation by a Unique a-class N4-Cytosine Methyltransferase Is Required for DNA Transformation of Caldicellulosiruptor bescii DSM6725," PLoS ONE 7(8), e43844. DOI: 10.1371/journal.pone.0043844. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)