U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights
Subsurface Biogeochemical Research Program


Improved Approach for Modeling Pu Behavior in the Environment
Published: August 10, 2012
Posted: October 18, 2012

The presence of plutonium (Pu) in the environment due to anthropogenic activity remains a serious problem. Predicting Pu transport and fate requires an understanding of biogeochemical processes that are particularly complicated in the case of Pu. Detailed Pu characterization is difficult because its very low environmental concentrations make most experimental approaches difficult to use. Extrapolation from higher Pu concentration studies in the laboratory are subject to concentration-related artifacts. Researchers at Lawrence Livermore National Laboratory recently explored an alternate course of ab initio simulations to study aqueous actinide ions. They tested a number of approaches to simulate the highly insoluble species Pu (IV), using a comparison of ab initio electronic structure methods applied to a benchmark case under environmentally relevant concentrations and neutral pH. They proposed the use of the extension of density functional theory that explicitly includes onsite interactions as a method to improve the calculation. The application of this method combined with additional derived parameters was proposed as an overall approach for largescale dynamical simulations of Pu (IV) chemistry.

Reference: Huang, P., M. Zavarin, and A. B. Kersting. 2012. "Ab initio Structure and Energetics of Pu(OH)4 and Pu(OH)4(H2O)n Clusters: Comparison Between Density Functional and Multi-Reference Theories," Chemical Physics Letters 543, 193–98. (Reference link)

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. Search all BER Highlights

Recent SBR Highlights

Jan 07, 2019
Effects of Water Flow Variation in Large Rivers Exacerbated by Drought
Model shows frequent fluctuation in river flows, caused by dam operations, lead to greater changes [more...]

Oct 29, 2018
Influence of Hydrological Perturbations and Riverbed Sediment Characteristics on Hyporheic Zone Respiration of CO2 and N2
Hyporheic Controls on Greenhouse Gas Production. The Science In this work we advanc [more...]

Oct 01, 2018
Geochemical Exports to River from the Intra-Meander Hyporheic Zone under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado
Meanders of the East River act as a sink of nutrients and metals during high-water and extended ba [more...]

Sep 25, 2018
Rarely Studied Microbes Associated With Production of Toxic Methylmercury in Great Lakes Estuary
New paper lays foundation for future studies of the role of understudied microorganisms in methylm [more...]

Sep 04, 2018
Unexpected High Carbon Fluxes from the Deep Unsaturated Zone in a Semi-Arid Region
The Science Understanding of terrestrial carbon cycling has relied primarily on studies o [more...]

List all highlights (possible long download time)