Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program

Highlights Matching Your Search

Return to Search

Listed by publication date


Published: August 10, 2012
Posted: October 18, 2012

Improved Approach for Modeling Pu Behavior in the Environment

The presence of plutonium (Pu) in the environment due to anthropogenic activity remains a serious problem. Predicting Pu transport and fate requires an understanding of biogeochemical processes that are particularly complicated in the case of Pu. Detailed Pu characterization is difficult because its very low environmental concentrations make most experimental approaches difficult to use. Extrapolation from higher Pu concentration studies in the laboratory are subject to concentration-related artifacts. Researchers at Lawrence Livermore National Laboratory recently explored an alternate course of ab initio simulations to study aqueous actinide ions. They tested a number of approaches to simulate the highly insoluble species Pu (IV), using a comparison of ab initio electronic structure methods applied to a benchmark case under environmentally relevant concentrations and neutral pH. They proposed the use of the extension of density functional theory that explicitly includes onsite interactions as a method to improve the calculation. The application of this method combined with additional derived parameters was proposed as an overall approach for largescale dynamical simulations of Pu (IV) chemistry.

Reference: Huang, P., M. Zavarin, and A. B. Kersting. 2012. "Ab initio Structure and Energetics of Pu(OH)4 and Pu(OH)4(H2O)n Clusters: Comparison Between Density Functional and Multi-Reference Theories," Chemical Physics Letters 543, 193–98. (Reference link)

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Mission Science: Environmental Cleanup

Division: SC-23.1 Climate and Environmental Sciences Division, BER


 

Recent Highlights

Dec 14, 2016
Clay Minerals and Metal Oxides Can Change How Uranium Travels Through Sediments
The molecular form of reduced uranium in the subsurface is affected by common sediment constitue [more...]

Oct 25, 2016
Future Climate Warming Induces Emergence of New Hydrologic Regimes of Surface Water Resources in the Conterminous United States
Global warming poses great challenges to the future U.S. surface water supply. [more...]

Sep 01, 2016
Reconciling Observations and Global Models of Terrestrial Water Fluxes
Water table depth and groundwater flow are key to understanding the amount of water that plants [more...]

Aug 26, 2016
A Novel Iron-Loving Bacterium from the Deep Subsurface
New research has uncovered the bacterium Orenia metallireducens, a microorganism from 2 [more...]

Jul 28, 2016
Microbial Respiration in Deep Subsurface Contributes Significant Greenhouse Gas Fluxes to Atmosphere
CO2 production from soils between 2 m and 3.5 m in depth contributes ˜17% of total ga [more...]