Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program



Improved Approach for Modeling Pu Behavior in the Environment
Published: August 10, 2012
Posted: October 18, 2012

The presence of plutonium (Pu) in the environment due to anthropogenic activity remains a serious problem. Predicting Pu transport and fate requires an understanding of biogeochemical processes that are particularly complicated in the case of Pu. Detailed Pu characterization is difficult because its very low environmental concentrations make most experimental approaches difficult to use. Extrapolation from higher Pu concentration studies in the laboratory are subject to concentration-related artifacts. Researchers at Lawrence Livermore National Laboratory recently explored an alternate course of ab initio simulations to study aqueous actinide ions. They tested a number of approaches to simulate the highly insoluble species Pu (IV), using a comparison of ab initio electronic structure methods applied to a benchmark case under environmentally relevant concentrations and neutral pH. They proposed the use of the extension of density functional theory that explicitly includes onsite interactions as a method to improve the calculation. The application of this method combined with additional derived parameters was proposed as an overall approach for largescale dynamical simulations of Pu (IV) chemistry.

Reference: Huang, P., M. Zavarin, and A. B. Kersting. 2012. "Ab initio Structure and Energetics of Pu(OH)4 and Pu(OH)4(H2O)n Clusters: Comparison Between Density Functional and Multi-Reference Theories," Chemical Physics Letters 543, 193–98. (Reference link)

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Mission Science: Environmental Cleanup

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

Recent Highlights

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]

Jul 06, 2017
Simple Non-Electrostatic Model Successfully Predicts Long-Term Uranium Mobility
When compared to results from a more complicated surface complexation model with electrostatic c [more...]

Jan 25, 2017
Building Confidence in Hydrologic Models
Model intercomparison project evaluates performance of seven different integrated hydrology mode [more...]

Jan 24, 2017
Sorption to Organic Matter Controls Uranium Mobility
Organic matter controls uranium mobility. The Science  
more...]

Dec 14, 2016
Clay Minerals and Metal Oxides Can Change How Uranium Travels Through Sediments
The molecular form of reduced uranium in the subsurface is affected by common sediment constitue [more...]