Subsurface Biogeochemical Research. Click to return to home page.
Department of Energy Office of Science. Click to visit main DOE SC site.

U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights for
Subsurface Biogeochemical Research Program

Improved Approach for Modeling Pu Behavior in the Environment
Published: August 10, 2012
Posted: October 18, 2012

The presence of plutonium (Pu) in the environment due to anthropogenic activity remains a serious problem. Predicting Pu transport and fate requires an understanding of biogeochemical processes that are particularly complicated in the case of Pu. Detailed Pu characterization is difficult because its very low environmental concentrations make most experimental approaches difficult to use. Extrapolation from higher Pu concentration studies in the laboratory are subject to concentration-related artifacts. Researchers at Lawrence Livermore National Laboratory recently explored an alternate course of ab initio simulations to study aqueous actinide ions. They tested a number of approaches to simulate the highly insoluble species Pu (IV), using a comparison of ab initio electronic structure methods applied to a benchmark case under environmentally relevant concentrations and neutral pH. They proposed the use of the extension of density functional theory that explicitly includes onsite interactions as a method to improve the calculation. The application of this method combined with additional derived parameters was proposed as an overall approach for largescale dynamical simulations of Pu (IV) chemistry.

Reference: Huang, P., M. Zavarin, and A. B. Kersting. 2012. "Ab initio Structure and Energetics of Pu(OH)4 and Pu(OH)4(H2O)n Clusters: Comparison Between Density Functional and Multi-Reference Theories," Chemical Physics Letters 543, 193–98. (Reference link)

Contact: Arthur Katz, SC-23.2, (301) 903-4932
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Mission Science: Environmental Cleanup

Division: SC-23.1 Climate and Environmental Sciences Division, BER


Recent Highlights

Nov 21, 2017
CrunchFlow Receives 2017 R&D 100 Award
Powerful software simulates how chemical reactions occur and change as fluids travel underground. [more...]

Nov 01, 2017
Assembly of Microbial Communities Affects Biogeochemistry
Dispersal varies the relationship between microbial communities and biogeochemical function.

Sep 29, 2017
How Bacteria Produce Manganese Oxide Nanoparticles
Structural characterization of bacterial enzyme complex sheds light on manganese biomineralizati [more...]

Sep 05, 2017
A Regional Model for Uranium Redox State and Mobility in the Environment
Redox variable sediments mediate uranium mobility in the upper Colorado River Basin. [more...]

Aug 26, 2017
New Approach to Characterize Natural Organic Matter in Belowground Sediments
Efforts to characterize carbon stored in sediments below 1 meter are critical for understanding t [more...]