U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Differences in the Response of the Atlantic Ocean Circulation to Greenland Freshwater Input Using High- and Low-Resolution Models
Published: May 11, 2012
Posted: August 21, 2012

The sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to high-latitude freshwater input is a key uncertainty in the climate system. Considering the importance of the AMOC for global heat transport and the vulnerability of the Greenland Ice Sheet to global warming, assessing this sensitivity is critical for climate change projections. A unique set of computational experiments were conducted at Los Alamos National Laboratory to investigate the adjustment of the AMOC to enhanced melt water from the Greenland Ice Sheet under present-day conditions. This is the first time that the response of a global, high-resolution strongly-eddying ocean model was systematically compared to that of a typical coarser-grid ocean Intergovernmental Panel on Climate Change-class climate model. The overall decline of the AMOC on decadal time scales is quantitatively similar (<10%) in the two configurations. However, the time-varying transient response is significantly different; the AMOC decline and reduction during wintertime convection is markedly more gradual and persistent in the strongly-eddying configuration. The strongly-eddying ocean model also responds more strongly to a traditional, single dump of freshwater, in contrast to the low-resolution model, in which the spatial distribution of the freshwater flux anomaly does not matter for the AMOC response. This study reveals the conditions under which climate projections based on coarse models need to be revisited with higher-resolution investigations.

Reference: Weijer, W., M. E. Maltrud, M. W. Hecht, H. A. Dijkstra, and M. A. Kliphuis. 2012. "Response of the Atlantic Ocean Circulation to Greenland Ice Sheet Melting in a Strongly-Eddying Ocean Model," Geophysical Research Letters 39, L09606. DOI: 10.1029/2012GL051611. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)