BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Improving Understanding of Future Chemically Active Greenhouse Gases?
Published: May 08, 2012
Posted: August 21, 2012

Greenhouse gas emissions from fossil fuel combustion contribute to climate warming, but to better estimate the amount of warming, uncertainties about the concentrations and the climate response need to be addressed. Some greenhouse gases are chemically reactive in the atmosphere, have additional uncertainties about their chemical production and destruction, and may be potential targets for short-term mitigation. New DOE research at the University of California at Irvine has taken the first systematic look at the uncertainties in attributing and projecting human-driven increases in greenhouse gases. The Representative Concentration Pathways future emissions scenarios used in the current Intergovernmental Panel on Climate Change assessment have large uncertainties for methane (CH4, 25%) and nitrous oxide (N2O, 50%), and thus do not accurately project future abundances. The new study combines observational and model data with uncertainties that constrain the pre-industrial (natural) and current (natural + anthropogenic) greenhouse gas budgets. These data include pre-industrial abundances, current abundances and trends, lifetimes past and projected, and atmospheric distributions. Statistical methods were applied to assess, for the first time, the current budgets, anthropogenic fractions, and projected abundances with uncertainties. The methane lifetime was found to be 9.1 ± 0.9 years. Anthropogenic emissions contribute 64% of total emissions. N2O and CH4 emissions and abundances, including uncertainties, were also projected and values sometimes deviated from projections given by integrated assessment models. The research helps identify aspects of these chemical systems requiring further research and improves both the projections and mitigation potentials for greenhouse gases.

Reference: Prather, M. J., C. D. Holmes, and J. Hsu. 2012. "Reactive Greenhouse Gas Scenarios: Systematic Exploration of Uncertainties and the Role of Atmospheric Chemistry," Geophysical Research Letters 39, L09803. DOI: 10.1029/2012GL051440. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)