BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


How a Surface Protein Enables Metabolism of a Methane-Generating Microbe
Published: July 02, 2012
Posted: August 20, 2012

Methanogenic microbes known as Archaea carry out many chemical transformations essential for anaerobic carbon recycling in virtually all environments. However, little is known about how raw materials for, and products of, these transformations are transported between an Archaeal cell and its environment. Research now has determined the structure of a key surface-layer protein of a methane-generating microbe, Methanosarcina acetivorans, enabling new insights into how this microbe communicates with its surroundings. The new information enables construction of a diagram of the cell envelope's surface layer, showing the pores through which chemical species move back and forth. Three types of pores with distinctly different sizes and shapes were identified. All of them are small and highly negatively charged, which means that they are highly selective about which substances can pass through the layer into the cell. DNA sequencing of several related species of Methanosarcinales suggests that the structures of their surface layer proteins are similar to the one in M. acetivorans. These results provide valuable information for understanding the role of these microbes in producing methane in natural environments, a potentially major factor in global carbon cycling. The research was led by Robert Gunsalus of the UCLA-DOE Institute of Genomics and Proteomics.

Reference: Arbing, M. A., et al. 2012. "Structure of the Surface Layer of the Methanogenic Archaean Methanosarcina acetivorans," Proceedings of the National Academy of Sciences of the USA 109(89), 11,812-817. DOI: 10.1073/pnas.1120595109. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)