U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improved Assessment of Climate Model Clouds
Published: August 01, 2012
Posted: August 20, 2012

Direct comparison of climate-model simulated clouds with satellite observations has been difficult because there are not direct equivalents between the model representation of clouds and what satellites are able to see. To largely solve this issue, a diagnostic tool—the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP)—was developed by a group of scientists worldwide, including scientists at Lawrence Livermore National Laboratory (LLNL). By mimicking the satellite view of an atmospheric column with model-specified physical properties, COSP enables a meaningful comparison between modelled clouds and satellite observations overcoming the significant ambiguities in the direct comparison of model simulations with satellite retrievals. LLNL scientists, working with scientists at the National Center for Atmospheric Research (NCAR), have used COSP to assess the latest version of the NCAR/DOE Community Atmosphere Model (CAM5). Multiple independent satellite datasets and their corresponding instrument simulators in COSP were combined to systematically evaluate the model performance. Compared with the earlier atmospheric model version (CAM4), the new CAM5 model, with its more advanced physics, significantly reduces the long-standing errors in simulated clouds by increasing the total cloud fraction, decreasing optically thick clouds, and increasing mid-level clouds. The COSP diagnostics revolutionize the comparison technique, enabling consistent inter-model and observation-model comparisons. Ultimately, by better identifying model cloud biases, COSP will help to reduce uncertainty in climate predictions. This paper was included in the CCSM Earth System Model CESM1 special collection.

Reference: Kay, J. E., B. R. Hillman, S. A. Klein, Y. Zhang, B. Medeiros, R. Pincus, A. Gettelman, B. Eaton, J. Boyle, R. Marchand, and T. P. Ackerman. 2012. "Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators, Journal of Climate 25, 5190-5207. DOI: 10.1175/JCLI-D-11-00469.1. Community Earth System Model Special Issue. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)