U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Community Atmospheric Model Passes ARM Test for Aerosol Effects on Cloud Droplet Size
Published: April 28, 2012
Posted: August 20, 2012

Using measurements to evaluate the impacts of aerosols on cloud properties can help narrow climate model uncertainties by identifying where model problems occur and where model representations are robust for aerosol-cloud interactions. DOE scientists at Lawrence Livermore and Pacific Northwest National Laboratories have quantified the aerosol impacts on cloud droplet effective radius (aerosol first indirect effect, FIE) for non-precipitating, low-level, single-layer liquid phase clouds simulated in the Community Atmospheric Model version 5 (CAM5) at three Atmospheric Radiation Measurement (ARM) sites. The aerosol FIE is quantified in terms of a relative change in cloud droplet effective radius for a relative change in aerosol amount under conditions of fixed liquid water amount. The study shows that CAM5 simulates aerosol-cloud interactions reasonably well for this specific cloud type and the simulated FIE is consistent with the long-term ARM observations at the examined locations. The high sensitivity of aerosol FIE to cloud liquid water amount and aerosol variable and low sensitivity to location and time are also consistent with observational studies. If this study has general applicability for other cloud types and locations, it suggests that the possible overestimation of aerosol climate impacts found by other studies may be a problem from other aerosol indirect effects, such as cloud lifetime effects, rather than the FIE.

Reference: Zhao, C., S. A. Klein, S. Xie, X. Liu, J. S. Boyle, and Y. Zhang. 2012. "Aerosol First Indirect Effects on Non-Precipitating Low-Level Liquid Cloud Properties as Simulated by CAM5 at ARM Sites," Geophysical Research Letters 39, L08806. DOI:10.1029/2012GL051213. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)