U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Combining Crystallography and Visible Spectroscopy to Understand Enzymes
Published: January 08, 2012
Posted: May 30, 2012

Structure and function are intimately linked but do not necessarily predict the other. For example, X-ray crystallography provides 3-D atomic structural information about biological macromolecules but does not define important details about metal ions. However, the oxidation state of metal ions at an enzyme's active site has a critical effect on enzyme behavior. Thus, an enzyme's catalytic function derives from the electronic structure of those atoms influencing or directly participating in the reaction, information not revealed by the scattering methods used in X-ray crystallography. A new technology has been developed that simultaneously carries out crystallography and UV-visible and Raman spectroscopy to determine the atomic structure of the entire protein, and electronic and vibrational structures of the metal ions or cofactors within. The combined instrumentation has been used to study the process of demethylation of an organic substrate molecule by an enzyme whose active site includes an iron-sulfur cluster. The authors used spectroscopy to follow the change in the oxidation state of the cluster during the crystallography data collection and to formulate a mechanism for the process. The results provide insight into an important class of phenomena that control cellular behavior. The technology was developed by scientists at the Protein Crystallography Research Resource at the National Synchrotron Light Source at Brookhaven National Laboratory. The new study was led by Allen M. Orville of Brookhaven and Pinghua Liu and Karen N. Allen of Boston University and is published in the Journal of the American Chemical Society.

Reference: Daughtry, K. D., et al. 2012. "Quaternary Ammonium Oxidative Demethylation: X-Ray Crystallographic, Resonance Raman, and UV-Visible Spectroscopic Analysis of a Rieske-Type Demethylase," Journal of the American Chemical Society 134(5), 2823-2834. DOI: 10.1021/ja2111898. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)