U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

The Weight of Rain in Climate Models Impacts Cloud Evolution
Published: February 23, 2012
Posted: May 24, 2012

As the spatial resolution used in climate simulations becomes finer, the models become capable of representing more intense convective rain events (showery rain). However, the mass of precipitation in a cloud is not accounted for in many global atmospheric models (AGCMs), including the Community Atmosphere Model (CAM), but it may have an important impact on cloud evolution. DOE-funded researchers examined results from a cloud resolving model (CRM) that uses extremely high horizontal resolution and explicitly resolves atmospheric convection. They found that the weight of precipitation can increase atmospheric pressure by significant amounts over areas as large as 25km x 25km—an area similar to the grid box sizes in the coming generation of AGCMs. A simple representation of the pressure perturbation caused by precipitation mass was constructed and introduced into the latest version of CAM v5. Effects on both the intensity spectrum of precipitation and its mean distribution were found. This additional pressure tended to reduce the strength of the most intense small-scale upward motion and the frequency of intense precipitation in the model.

Reference: Bacmeister, J. T., P. H. Lauritzen, A. Dai, and J. E. Truesdale. 2012. "Assessing Possible Dynamical Effects of Condensate in High-Resolution Climate Simulations," Geophysical Research Letters 39, L04806, DOI: 10.1029/2011GL050533. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)