U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Switchgrass Sequencing Provides Insight into Genome Structure and Organization
Published: April 12, 2012
Posted: May 08, 2012

Perennial switchgrass (Panicum virgatum L.) is capable of producing high biomass yields with low inputs on marginal lands, making it one of the most promising candidate bioenergy feedstocks. Breeding programs are underway to enhance and improve switchgrass as a viable agricultural crop, but these efforts are hampered by the limited genetic and genomic information currently available. The switchgrass genome is now being sequenced, but its highly complex structure makes assembly difficult. Researchers at the DOE Joint Genome Institute (JGI) and the DOE Joint BioEnergy Institute (JBEI) report on the construction, sequencing, and analysis of two "Bacterial Artificial Chromosome" (BAC) libraries from switchgrass. These libraries contain relatively large DNA segments and represent essentially a random sampling of the genome, allowing the researchers to analyze structure and function at a genome-wide scale. Comparisons with sequences from other bioenergy-relevant grasses reveal that switchgrass is closely related to sorghum, indicating that the fully sequenced sorghum genome would serve as a good reference for assembling switchgrass gene space. The resources generated here will have utility for a number of applications, including identification of switchgrass gene functions relevant to bioenergy production.

Reference: Sharma, M. K., R. Sharma, P. Cao, J. Jenkins, L. E. Bartley, M. Qualls, J. Grimwood, J. Schmutz, D. Rokhsar, and P. C. Ronald. 2012. "A Genome-Wide Survey of Switchgrass Genome Structure and Organization," PLoS ONE 7(4), e33892, DOI: 10.1371/journal.pone.0033892. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)