BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Evaluating and Improving Water Runoff in the Community Land Model
Published: December 24, 2011
Posted: March 07, 2012

To simulate the exchange of water and energy between the ground and the atmosphere, the flow of water over and through the land surface must be accurately simulated. DOE-funded scientists at Pacific Northwest National Laboratory and Oak Ridge National Laboratory and a collaborator from the Chinese Academy of Sciences tested the simulation of water flow in the Community Land Model (CLM4) by comparing model simulations of runoff, surface water, and energy flux at various locations using streamflow gauge measurements from the U.S. Geological Survey and measurements from various flux towers across North America. The original model predicted excessive runoff variations that are not realistic when compared to observations. The team demonstrated that hydrologic simulations from CLM4 might be improved by calibrating the model parameters to better approximate actual site conditions. In addition, they showed it is important to represent spatial heterogeneity in land cover, vegetation, soil, and topography for better simulation of streamflow by increasing the spatial resolution when applying the model to a mountainous watershed. The research demonstrates the important constraint of soil hydrology on the surface energy budget and highlights the need to improve runoff parameterizations in land and surface models. The team identified several methods to improve the simulations, mainly by improving how the subsurface runoff is parameterized.

Reference: Li, H., M. Huang, M. S. Wigmosta, Y. Ke, A. M. Coleman, L. R. Leung, A. Wang, and D. M. Ricciuto. 2011. "Evaluating Runoff Simulations from the Community Land Model 4.0 Using Observations from Flux Towers and a Mountainous Watershed," Journal of Geophysical Research - Atmospheres 116, D24120, DOI:10.1029/2011JD016276. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)