U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Miscanthus Genetic Map Provides Resource for Crop Improvement
Published: January 25, 2012
Posted: March 07, 2012

Perennial grasses are a potential source of feedstocks for "second-generation" cellulosic bioethanol because they efficiently accumulate large amounts of biomass and can be grown on marginal lands not suitable for conventional agricultural food crops. Among these grasses, Miscanthus is one of the most promising bioenergy crops in the Midwest because of its extremely high biomass yields, in particular the species Miscanthus x giganteus. However, efforts to breed improved varieties of Miscanthus are hampered by its complicated genome structure and lack of genetic tools. With support from the Joint USDA-DOE Plant Feedstocks Genomics for Bioenergy program, researchers report the first genetic linkage maps of Miscanthus using molecular markers derived from the closely related sugarcane grass. Genetic similarity between Miscanthus, sorghum, and sugarcane allowed comparative studies between the three species, revealing information into the genomic relationships among them and also allowing the first genetic map length estimate of Miscanthus. These resources provide a framework that will significantly enhance Miscanthus improvement efforts by facilitating identification of biomass-relevant genes and marker-assisted selection in this important bioenergy crop.

Reference: Kim, C., D. Zhang, S. A. Auckland, L. K. Rainville, K. Jakob, B. Kronmiller, E. J. Sacks, M. Deuter, and A. H. Paterson. 2012. "SSR-Based Genetic Maps of Miscanthus sinensis and M. sacchariflorus and Their Comparison to Sorghum," Theoretical and Applied Genetics, DOI:10.1007/s00122-012-1790-1. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)