BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Community Atmosphere Model Underestimates Low-Level Cloud Water in the Arctic
Published: December 24, 2011
Posted: March 07, 2012

Climate models have been used to predict future climate changes, including Arctic sea ice loss under future warming climate and Arctic processes that are highly sensitive to feedbacks between clouds and the surface. The representation of Arctic clouds in the newly released Community Atmospheric Model version 5 (CAM5) was examined and tested by a team of researchers, including Department of Energy (DOE) scientists from Pacific Northwest National Laboratory, Lawrence Livermore National Laboratory, and Brookhaven National Laboratory. The model was run in forecast mode using the DOE-supported Cloud-Associated Parameterizations Testbed (CAPT) framework to facilitate comparison with observations from the DOE Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE). ISDAC and M-PACE were conducted at the North Slope of Alaska site in April 2008 and October 2004, respectively. The team found that CAM5 generally simulates cloud cover in the Arctic successfully; however, it underestimates the observed cloud liquid water content in low-level stratocumulus. The underestimate of low-level clouds causes CAM5 to significantly underestimate the surface downward longwave radiative fluxes by 20-40 W m-2, which would in turn compromise the model's ability to accurately simulate Arctic climate. Model improvements on cloud microphysics such as the processes controlling conversion of liquid to frozen precipitation and on aerosol parameterizations are needed and highlighted in this research.

Reference: Liu, X., S. Xie, J. Boyle, S. A. Klein, X. Shi, Z. Wang, W. Lin, S. J. Ghan, M. Earle, P. S. K. Liu, and A. Zelenyuk. 2011. "Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations," Journal of Geophysical Research 116, D00T11, DOI:10.1029/2011JD015889. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)