BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Models Overestimate Strength of Deep Tropical Convection
Published: January 01, 2012
Posted: February 24, 2012

Atmospheric convection in the tropical regions is one of the main mechanisms of transporting solar energy from the equator to the polar regions (convection) of our planet. To project how climate change will affect global precipitation, it is important that models accurately simulate the upwelling and divergence of moisture in tropical clouds. DOE scientists at Pacific Northwest National Laboratory showed that global climate models are not accurately depicting the true depth and strength of tropical clouds that have a strong hold on the general circulation of atmospheric heat and the global water balance. The team surveyed tropical divergence in three global climate models, three global reanalyses (models corrected with observational data), and four sets of atmospheric measurements from field campaigns. Their survey uncovered significant uncertainties in current climate simulations and, in future projections, of the intensity and vertical structure of the low-level convergence of moisture to and upper-level divergence of heat away from the tropics. In the tropics and subtropics, deep divergent circulation is the largest contributor to net precipitation. Further, all global circulation models studied portray this process as deeper and stronger than what is observed in field measurements. Their analysis points to the need for model improvements to project water cycle changes in the 21st century.

Reference: Hagos, S. and L. R. Leung. 2012. "On the Relationship Between Uncertainties in Tropical Divergence and the Hydrological Cycle in Global Models," Journal of Climate 25(1), 381-291. DOI: 10.1175/JCLI-D-11-00058.1. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)