BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Coupling of Carbon and Nitrogen Cycles Critical for Biomass Sustainability
Published: September 29, 2011
Posted: February 23, 2012

A multi-component plant-soil biogeochemical model for the herbaceous energy crop switchgrass was developed and evaluated using data from a long-term bioenergy plantation in the southeastern United States. DOE scientists at Oak Ridge National Laboratory used the model to simulate biomass production, nitrogen dynamics, and carbon sequestration in soils beneath switchgrass over a 30-year period, revealing a strong coupling of carbon and nitrogen dynamics, both above- and below-ground. The lead scientist concluded that the extent to which biogeochemical cycles are coupled is a critical determinant of sustainability in systems where biomass growth and removal occurs annually. More efficient use of nitrogen in the production of biomass deserves further investigation. Based on model simulations, researchers believe that reductions in nitrogen fertilization are possible given rates of organic matter decomposition and soil nitrogen mineralization. Overall, the model simulations reveal a suite of feedbacks and tradeoffs in the production of feedstock for transportation fuels, but the author suggests that long-term production and removal of biomass from switchgrass fields for transportation fuels is possible.

Reference: Garten, C.T., Jr. 2011. "Review and Model-Based Analysis of Factors Influencing Soil Carbon Sequestration Beneath Switchgrass (Panicum virgatum)," BioEnergy Research, DOI: 10.1007/s112155-011-9154-2. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)