U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Type of Lignin Discovered in Vanilla Plant
Published: January 17, 2012
Posted: February 23, 2012

Found within the plant cell wall, lignin is a complex polymeric compound that provides the plant with both mechanical support and protection from pests and pathogens. However, the structural rigidity of this compound also inhibits efficient conversion of the sugars within plant cell walls into biofuels, making lignin a major obstacle to the efficient production of biofuels from cellulosic feedstocks. Three types of lignin are usually found in nature: H-, G-, and S-lignins. They are synthesized by polymerization of their respective monolignol units. However, lignin biosynthesis can be relatively flexible, sometimes allowing different and more unusual monolignols to be incorporated. Researchers at the DOE BioEnergy Science Center (BESC) and DOE Great Lakes Bioenergy Research Center (GLBRC) report the identification and characterization of a new type of polymer, C-lignin, composed almost exclusively of caffeyl units. Detected in the Vanilla orchid, a few related orchids, and some cactus species, this unique new lignin was found only in the seed coats, with more conventional lignins observed in other plant tissues. These results may lead to a greater understanding of the lignin biosynthetic pathway, as well as new approaches for engineering biomass that can be more easily and efficiently digested for conversion into biofuels.

Reference: Chen, F., Y. Tobimatsu, D. Havkin-Frenkeld, R. A. Dixon, and J. Ralph. 2012. "A Polymer of Caffeyl Alcohol in Plant Seeds," Proceedings of the National Academy of Sciences of the United States of America 109(5), 1772-77. DOI: 10.1073/pnas.1120992109. (Reference link)

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)