BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


How Bacteria Influence Speciation (and Mobility) of Mercury in the Environment
Published: September 14, 2011
Posted: January 12, 2012

Significant amounts of mercury have contaminated some DOE cleanup sites, such as the Oak Ridge Reservation. Mercury mobility is strongly dependent on its chemical form, with the elemental metal being volatile and hence mobile in the environment, while oxidized forms are much less mobile (though more toxic). New research at Argonne National Laboratory has provided improved understanding of the role of bacteria in controlling the chemical form of mercury in subsurface environments. The research group used x-ray absorption spectroscopy experiments at the Advanced Photon Source to study the sorption of oxidized HgII to Bacillus subtilis, a bacterium commonly found in soils. They found that HgII sorbs to bacterial cells via both high-affinity sulfhydryl binding groups and low-affinity carboxyl groups on the cell surfaces. The HgII that is sorbed to cells via the sulfhydryl groups remains unavailable for reduction by magnetite, a reactive iron-containing mineral often found in sediments, even after two months of reaction time. These results identify a mechanism by which mercury might be immobilized in the environment and help provide a clearer picture of the complex system of interactions of mercury in the subsurface.

Reference: Mishra, B., E. J. O'Loughlin, M. I. Boyanov, and K. M. Kemner. 2011. "Binding of Hg(II) to High-Affinity Sites on Bacteria Inhibits Reduction to Hg(0) by Mixed Fe(II/III) Phases," Environmental Science and Technology 45(22), 9597–9603. DOI: 10.1021/es201820c. (Reference link)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009, Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology Infrastructure

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)