U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Microbial Conversion of Switchgrass to Multiple Drop-In Biofuels
Published: November 28, 2011
Posted: January 12, 2012

The low efficiency and high cost of enzymes used to break down plant material into sugars remains a major barrier to economically competitive production of cellulosic biofuels. Consolidated biomass processing, in which a single microorganism both produces cellulose-degrading enzymes and converts the resulting sugars to a desired biofuel, presents a promising alternative to improve efficiency and reduce costs, but few organisms naturally possess both capabilities. Researchers at the Joint Bioenergy Institute (JBEI) have now engineeered a modified strain of the workhorse industrial microbe E. coli that expresses a tailored set of cellulases, allowing it to degrade both the cellulose and hemicellulose chains released from switchgrass pretreated with ionic liquid. This was accomplished by cloning cellulase genes from Cellvibrio japonicus, a soil microbe with similar protein secretion systems to E. coli, and modifying the genes to allow proper timing and level of cellulase expression in the host. The team then added metabolic pathways that allowed E. coli to convert resulting sugars to either of two drop-in automotive biofuels (biodiesel and butanol) or a jet fuel precursor terpene compound. This presents a promising new advance in consolidated biomass processing, and, given the relative ease of genetic modification in E. coli, offers tremendous potential for subsequent engineering to increase conversion efficiency or synthesize a broader range of fuels.

Reference: Bokinsky, G., P. P. Peralta-Yahyn, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Ercek, C. A. Voigt, B. A. Simmons, and J. D. Keasling. 2011. "Synthesis of Three Advanced Biofuels from Ionic Liquid-Pretreated Switchgrass Using Engineered Escherichia coli," Proceedings of the National Academy of Sciences of the United States 108(50), 19949-54. DOI: 10.1073/pnas.1106958108. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)