U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Nature Publication Reports Pollution Impacts on Clouds and Precipitation
Published: November 13, 2011
Posted: December 20, 2011

Using a 10-year set of extensive measurements made at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility in the U.S. Southern Great Plains, researchers found unprecedented strong evidence that aerosols drastically alter clouds and precipitation. Aerosols— tiny particles in the air, like dust or soot—affect clouds and precipitation through different mechanisms. Aerosols can serve as cloud condensation nuclei (CCN) that impact cloud microphysics and precipitation processes, or they can directly modulate radiative and latent energy, changing the atmospheric stability dynamics and thermodynamics that dictate cloud development. The interplay of these effects can either suppress or foster cloud and precipitation processes, depending on the specific circumstances. This study showed that increased aerosol concentrations increased the cloud top height and thickness—most significantly in the summer by up to a factor of 2—for clouds with a warm base (above 15°C) and mixed-phase tops (below -4°C). Precipitation frequency increased with aerosols for deep clouds with high water content and decreased for clouds with little water. The observational findings are successfully reproduced with a state-of-the-art cloud-resolving model demonstrating that these aerosol processes are well represented in the model.

Reference: Li., Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, Y. Ding. 2011. "Long-Term Impacts of Aerosols on the Vertical Development of Clouds and Precipitation," Nature Geoscience 4, 888-94. DOI:10.1038/ngeo1313. (Reference link)

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Rickey Petty, SC-23.1, (301) 903-5548, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)