BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


How do Microbes Adapt to Diverse Environments?
Published: November 22, 2011
Posted: December 20, 2011

Earth's microbes live in staggeringly diverse environments, colonizing habitats with extremes of temperature, pH, salt concentration, or presence of toxic compounds. Archaea, a domain of single-celled microbes sharing traits with bacteria and simple eukaryotes, are well known for their ability to thrive in harsh environments. How this impressive adaptive capability is achieved has remained a mystery. Now, a team of investigators at the Institute for Systems Biology has completed a groundbreaking study on the role of gene regulation in environmental niche adaptation by Halobacterium salinarum, an archaeal microbe that grows in high salt environments. Using a combination of comparative genomics and hypothesis-driven molecular biology experiments, the team found that a specific class of regulatory genes had been duplicated during the archaea's evolution and controls a nested set of "niche adaptation programs." These programs control cascades of gene expression essential for adaptation to particular environments. Diversification of these control elements has resulted in a "division of labor" such that overlapping regulatory networks flexibly balance large-scale functional shifts under changing conditions, where rapid adaptation increases fitness. Describing mechanisms that control niche adaptation in microbes allows us to better understand how microbial communities function in natural environments, and provides an intriguing glimpse into fundamental design rules governing biological systems.

Reference: Turkarslan, S., D. J. Reiss, G. Gibbins, W. L. Su, M. Pan, J. C. Bare, C. L. Plaisier, and N. S. Baliga. 2011. “Niche Adaptation by Expansion and Reprogramming of General Transcription Factors,” Molecular Systems Biology 7, Article 554. DOI:10.1038/msb.2011.87. (Reference link)

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)