BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Low-Elevation Limber Pine Seedlings Consistently Outperform High-Elevation Seedlings
Published: July 14, 2011
Posted: November 02, 2011

Climate change is predicted to cause forest tree distributions to higher latitudes and elevations, which will require seedling recruitment beyond current forest boundaries. However, predicting the likelihood of successful plant establishment beyond current species' ranges under changing climate is complicated by the interaction of genetic and environmental controls on seedling establishment. DOE-supported scientists at the University of California, Merced, transplanted germinated seedlings of limber pine (Pinus flexilis) from high- and low-elevation sites in common gardens along a gradient from subalpine forest into the alpine zone and examined differences in physiology and morphology between and among seed source sites. The results of the study suggest that tree seedlings germinating from lower-elevation seed consistently outperformed seedlings from higher-elevation seed, even above the current tree line. This suggests that inherent (e.g., genetic) differences between seed source populations could be an important factor affecting species range expansions or shifts due to climate change.

Reference: Reinhardt, K., C. Castanha, M. J. Germino, and L. M. Kueppers. 2011. "Ecophysiolgical Variations in Two Provenances of Pinus flexilis Seedlings across an Elevation Gradient from Forest to Alpine," Tree Physiology 31, DOI:10.1093/treephys/tpr055. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)