BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Will Methane Buried in Shallow Arctic Ocean Sediments Be Released in Response to Warming Oceans?
Published: September 15, 2011
Posted: November 02, 2011

Vast quantities of methane, a potent greenhouse gas, are trapped in oceanic hydrate deposits. There is concern that a rise in ocean temperatures will induce dissociation of these hydrate deposits, potentially releasing large amounts of carbon into the atmosphere. The recent discovery of active methane gas venting along the shallow continental slope west of Svalbard in northern Norway suggests that this process may already have begun, but the source of the methane has not yet been determined. DOE researchers have performed two-dimensional simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed methane gas release. The results show that shallow hydrate deposits subjected to recently observed or future predicted temperature changes at the seafloor result in the release of methane at magnitudes and locations similar to what has been observed. Localized gas release is observed for most cases of gradual and rapid warming. These model results resemble recently published observations and strongly suggest that hydrate dissociation and methane release due to climate change may be real, that it could occur on decadal timescales, and that it may already be occurring.

Reference: Reagan, M. T., G. J. Moridis, S. M. Elliott, and M. Maltrud. 2011. "Contributions of Oceanic Gas Hydrate Dissociation to the Formation of Arctic Ocean Methane Plumes," Journal of Geophysical Research Oceans 116, C09014. DOI: 10.1029/2011JC007189, 2011. (Reference link)

Contact: Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)