BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Global Rates of Photosynthesis Greater than Previously Assumed
Published: September 29, 2011
Posted: November 02, 2011

Estimates of global carbon sinks have large uncertainties that complicate estimates of Earth's capacity to buffer rising atmospheric carbon dioxide (CO2). Photosynthesis is a major contributor to these carbon sinks. A DOE-funded team led by Ralph Keeling at the Scripps Institution of Oceanography followed the path of oxygen atoms on CO2 molecules during photosynthesis to create a new way to measure the efficiency of the world's plants. The ratio of two natural isotopes of oxygen in CO2 told researchers how long the CO2 had been in the atmosphere and how fast it had passed through plants. From this, they estimated that the global rate of photosynthesis is about 25 percent faster than thought. This new approach linked the changes in oxygen isotopes to El Niño, the global climate phenomenon associated with a variety of unusual weather patterns including low rainfall in tropical regions of Asia and South America. The naturally occurring isotopes of oxygen, 18O and 16O, are present in different proportions in the water inside leaves during dry, El Niño periods in the tropics. This oxygen ratio in leaf waters is passed along to CO2 when CO2 mixes with water inside leaves. This exchange of oxygen between CO2 and plant water also occurs in regions outside of the tropics that are not as affected by El Niño and where the 18O/16O ratio is more "normal." The team measured the time it took for the global 18O/16O ratio to return to normal following an El Niño event to infer the speed at which photosynthesis is taking place. They discovered that the ratio returned to normal faster than expected indicating that global photosynthesis occurs at a greater rate than previously assumed. The rate, expressed in terms of how much carbon is processed by plants in a year, has now been revised upward from the previous estimate of 120 Pg of carbon a year to a new annual rate between 150-175 Pg. These results suggest that the uncertainty in estimating global carbon sinks is even greater than previously thought.

Reference: Welp, L. R., R. F. Keeling, H. A. J. Meijer, A. F. Bollenbacher, S. C. Piper, K. Yoshimura, R. J. Francey, C. E. Allison, and M. Wahlen. 2011. "Interannual Variability in the Oxygen Isotopes of Atmospheric CO2 Driven by El Niño," Nature 477, 579-82. DOI:10.1038/nature10421. (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)