U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Persistence of Soil Organic Matter: It Takes an Ecosystem
Published: October 06, 2011
Posted: November 02, 2011

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. However, whereas some SOM persists for millennia, other SOM decomposes readily, according to phenomena that we currently do not understand. This limits our ability to predict how soils will respond to climate change. DOE scientists from Lawrence Berkeley National Laboratory have recently demonstrated that SOM molecular structure alone does not control SOM stability; in fact, environmental and biological controls predominate, such as interdependence of compound chemistry, reactive mineral surfaces, climate, water availability, soil acidity, soil redox state, and the presence of potential degraders in the immediate environment. In other words, the persistence of soil organic carbon is primarily not a molecular property, but an ecosystem property. The authors also propose ways to include this understanding in a new generation of experiments and soil carbon models that will improve predictions of the SOM response to global warming.

Reference: Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kogel-Knabner, J. Lehmann, D. A. C. Manning, O. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore. 2011. "Persistence of Soil Organic Matter as an Ecosystem Property," Nature 478, 49-56. (DOI: 10.1038/nature10386) (Reference link)

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)